SEPTEMBER 1957

m.p. 221-223°: v (cm.⁻¹) 3490, 1696 in CHCl₃; 3410, 1692 in Nujol; λ_{max} in 95% EtOH 224 (4.80), 283 (4.07), 291 (4.00); Anal. Calcd. for C₂₁H₂₀N₂O: C, 79.71; H, 6.37; N, 8.85; Found: C, 79.73; H, 6.43: N. 8.72. The differentiation between vinylindole and bisindole formation appears to be the result of a combination of electronic and steric effects on the relative rates with which the probable intermediate, the indolenine I, undergoes tautomerization to a vinylindole or alkylation by an indole to vield a bisindole.

SCHOOL OF CHEMISTRY University of Minnesota MINNEAPOLIS 14, MINN.

WAYLAND E. NOLAND DONALD N. ROBINSON⁷

Received July 8, 1957

(7) Research Corporation research assistant, 1956-1957. We are indebted to the Research Corp. for a Frederick Gardner Cottrell grant in support of this research.

Alkaline Decomposition of Quaternary Salts of Amine Oxides¹

Sir:

Since the time of Meisenheimer's classic experiments on quaternary salts of amine oxides,² numerous reports have been made of the alkaline decomposition of such salts to tertiary amine and aldehyde.³ Ochiai and his colleagues⁴ have applied the reaction to salts of pyridine-N-oxide and observed the formation of formaldehyde and acetaldehyde. Recently, Katritsky studied this reaction as a method of deoxygenating pyridine-N-oxides under nonreducing conditions and reported the formation of the corresponding bases in fair vield.⁵

In view of this new application and the general lack of quantitative data on these reactions, we would like to report our experience with N-benzyloxypyridinium salts which demonstrates that this is both an excellent method for preparing aromatic aldehydes and a convenient way of deoxygenating pyridine-N-oxides.

The formation of quaternary salts, such as I, proceeded in high yield by heating the appropriate pyridine-N-oxide with benzyl bromide or a similar halide in acetonitrile (I, 95%, m.p. 94-96°, Found: C, 54.15, H, 4.55; II, 92%, m.p. 113-115°, Found: C, 55.81, N, 5.08; III, 67%, m.p. 97-98°, Found: C, 40.32, H, 3, 47). When either I or II was treated with dilute

COMMUNICATIONS

aqueous sodium hydroxide, benzaldehyde could be isolated in 90-92% yield by extraction of the acidified solution with chloroform followed by concentration and distillation. In the case of I and II, work-up of the basic fraction in the usual way gave pyridine and α -picoline in 78 and 84% yields, respectively, after distillation. The decomposition of III was studied to provide a comparison of our procedure with other standard aldehyde syntheses,⁶ and gave pure o nitrobenzaldehyde, m.p. 42-43°, after chromatography over alumina, in 60% yield. The crude yield of brown crystals was 97%.

When *m*-xylyl dibromide was treated with pyridine-N-oxide, the di-salt (m.p. 121-122°, Found: C, 45.54, H, 4.51) formed in 97% yield. Decomposition of this di-salt with base gave isophthalaldehyde as pure crystals, m.p. 88-89°, in 62% yield. Other applications of the method are being investigated. It is apparent that there is a formal analogy between these alkaline decompositions and the formation of aldehydes by the alkaline cleavage of nitronic esters.7,8

Department of Chemistry	W. FEELY
UNIVERSITY OF ROCHESTER	W. L. LEHN ⁹
Rochester, N. Y.	V. BOEKELHEIDE

(6) Org. Syntheses, Coll. Vol. 3, 641 (1955).

(7) Weisler and Helmkamp, J. Am. Chem. Soc., 67, 1167 (1945).

(8) Hass and Bender, J. Am. Chem. Soc., 71, 1767 (1949); Org. Syntheses, 30, 99 (1950).

(9) Predoctoral Fellow, National Institutes of Health, 1956-57.

Selective Reductions with Diborane, an Acidic-Type Reducing Agent

Sir:

Alkali metal borohydrides and aluminohydrides are now widely utilized for the selective reduction of functional groups. Such reductions are believed to involve a transfer of a hydride unit from the complex anion to an electron-deficient center in the organic reactant.¹

Diborane has long been known to reduce aldehydes and ketones rapidly. In these reactions it is believed to function through an attack on an electron-rich center in the functional group.² The possibility that diborane, as an acidic-type reduc-

⁽¹⁾ Aided by a grant from the National Science Foundation.

⁽²⁾ Meisenheimer, Ann., 397, 273 (1913).

⁽³⁾ Cf. Culvenor, Rev. Pure. Applied Chem. (Australia), 3, 83 (1953); Katritsky, Quart. Rev., 10, 395 (1956). (4) Ochiai, Katada and Naita, J. Pharm. Soc. Japan, 64,

^{210 (1944);} Chem. Abstr., 45, 5154 (1951).

⁽⁵⁾ Katritsky, J. Chem. Soc., 2404 (1956).

⁽¹⁾ L. W. Trevoy and W. G. Brown, J. Am. Chem. Soc., 71, 1675 (1949). H. C. Brown, E. J. Mead, and B. C.

<sup>Subba Rao, J. Am. Chem. Soc., 77, 6209 (1955).
(2) H. C. Brown, H. I. Schlesinger, and A. B. Burg,</sup> J. Am. Chem. Soc., 61, 673 (1939).